STRUCTURAL ANALYSIS - I (CE406PC) COURSE PLANNER

I. COURSE OVERVIEW:

Civil Engineers are required to design structures like buildings, dams, bridges, etc. This course is intended to introduce the basic principles to impart adequate knowledge and successfully apply fundamentals of Structural Engineering within their chosen engineering application area. Take advantage of a strong technical education at the undergraduate level to embark on successful professional careers in industry or to continue with a graduate education in their area of specialization. Apply broad multi-disciplinary skills necessary to accomplish professional objectives in a rapidly changing technological world.

II. PREREQUISITE(S):

Level	Credits	Periods/Week	Prerequisites
UG	3	3	Strength of Materials - I

III. COURSE OBJECTIVES:

The objective of the course is to

1. Differentiate the statically determinate and indeterminate structures.
2. To understand the nature of stresses developed in perfect frames and three hinged arches for various types of simple loads
3. Analyze the statically indeterminate members such as fixed bars, continuous beams and for various types of loading.
4. Understand the energy methods used to derive the equations to solve engineering problems
5. Evaluate the Influence on a beam for different static \& moving loading positions

IV. COURSE OUTCOMES:

At the end of the course the student will able to

1. An ability to apply knowledge of mathematics, science, and engineering	Understand
2. Analyze the statically indeterminate bars and continuous beams	Analyze
3. Draw strength behavior of members for static and dynamic loading.	Understand
4. Calculate the stiffness parameters in beams and pin jointed trusses.	Apply
5. Understand the indeterminacy aspects to consider for a total structural system.	Understand
6. Identify, formulate, and solve engineering problems with real time loading	Analyze

Program Outcomes		Level	Proficiency assessed by
PO1	An ability to apply knowledge of computing, mathematical foundations, algorithmic principles, and computer science and engineering theory in the modeling and design of computer- 3 based systems to real-world problems (fundamental engineering analysis skills)	3	Assignments, Tutorials.
PO2	An ability to design and conduct experiments, as well as to analyze and interpret data (information retrieval skills)	3	Assignments, Tutorials, Exams.
PO3	An ability to design, implement ,and evaluate a computer- An ability to design , implement, and evaluate a computer-based system, process, component, or program to meet desired needs, within realistic constraints such as economic, environmental, social, political, health and safety, manufacturability, and sustainability (Creative Skills) ,andsustainability (CreativeSkills)	1.16	Assignments, Tutorials, Exams
PO4	An ability to function effectively on multi-disciplinary teams (team work)	1.16	--
PO5	An ability to analyze a problem, identify, formulate and use the appropriate computing and engineering requirements for 3 obtaining its solution (Engineering problem solving skills)		Assignments, Exams
P06	An understanding of professional, ethical, legal, security and social issues and responsibilities (professional integrity)		--
PO7	An ability to communicate effectively both in writing and orally (speaking / writing skills)		--
PO8	The broad education necessary to analyze the local and global impact of computing and engineering solutions on individuals, organizations, and society (engineering impact assessment skills)	0.5	Assignments, Exams.
PO9	Recognition of the need for, and an ability to engage in continuing professional development and life-long learning (continuing education awareness)		Assignments and Exams
PO10	A Knowledge of contemporary issues (social awareness)	0.5	Assignments
PO11	An ability to use current techniques, skills, and tools necessary for computing and engineering practice (practical engineering analysis skills)	1.33	Assignments and Exams
PO12	An ability to apply design and development principles in the construction of software and hardware systems of varying complexity (software hardware interface)		--

N-None S-Supportive H-High

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes	Level	Proficiency assessed by	
PSO1	UNDERSTANDING: Graduates will have an ability to understand, analyze and solve problems using basic mathematics and apply the techniques related to irrigation, structural design, etc.	2.16	Assignments, Tutorials, Exams
PSO2	ANALYTICAL SKILLS: Graduates will have an ability to to design civil structures, using construction components and to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety manufacturability and reliability and learn to work with multidisciplinary teams.	Projects	
PSO3	BROADNESS: Graduates will have an exposure to various fields of engineering necessary to understand the impact of other disciplines on civil engineering blueprints in a global, economic, and societal context and to have necessary focus for postgraduate education and research opportunities at global level.	$\mathbf{0 . 5}$	Guest Lectures

VII. SYLLABUS:

UNIT - I
ANALYSIS OF PERFECT FRAMES:
Types of frames - Perfect, Imperfect and Redundant pin jointed plane frames - Analysis of determinate pin jointed plane frames using method of joints, method of sections and tension coefficient method for vertical loads, horizontal loads and inclined loads.

UNIT - II

ENERGY THEOREMS:

Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear forces - Castigliano's theorem-Unit Load Method - Deflections of simple beams and pin- jointed plane frames - Deflections of statically determinate bent frames. THREE HINGED ARCHES - Introduction - Types of Arches - Comparison between Three hinged and Two hinged Arches - Linear Arch - Eddy's theorem - Analysis of Three hinged arches - Normal Thrust and radial shear and bending moment - Geometrical properties of parabolic and circular arches - Three hinged parabolic circular arches having supports at different levels.

UNIT - III

PROPPED CANTILEVER and FIXED BEAMS:

Determination of static and kinematic indeterminacies for beams- Analysis of Propped cantilever and fixed beams, including the beams with different moments of inertia - subjected to uniformly distributed load - point loads - uniformly varying load, couple and combination of loads - Shear force, Bending moment diagrams and elastic curve for Propped Cantilever and Fixed Beams - Deflection of Propped cantilever and fixed beams - effect of sinking of support.
effect of rotation of a support.

UNIT-IV

CONTINUOUS BEAMS:

Introduction-Continuous beams - Clapeyron's theorem of three moments Analysis continuous beams with constant and variable moments of inertia with one or both ends fixed-continuous beams with overhang - effect of sinking of supports

SLOPE DEFLECTION METHOD:

Derivation of slope-deflection equation, application to continuous beams with and without sinking of supports - Determination of static and kinematic indeterminacies for frames Analysis of Single Bay, Single storey Portal Frames by Slope Deflection Method including Side Sway - Shear force and bending moment diagrams and Elastic curve.

UNIT - V

MOVING LOADS and INFLUENCE LINES:

Introduction maximum SF and BM at a given section and absolute maximum shear force and bending moment due to single concentrated load, uniformly distributed load longer than the span, uniformly distributed load shorter than the span, two point loads with fixed distance between them and several point loads-Equivalent uniformly distributed loadFocal length Definition of influence line for shear force and bending moment - load position for maximum shear force and maximum bending Moment at a section - Point loads, uniformly distributed load longer than the span, uniformly distributed load shorter than the span- Influence lines for forces in members of Pratt and Warren trusses - Equivalent uniformly distributed load -Focal length.

TEXT BOOKS:

1. Structural Analysis Vol-I \& II by V.N. Vazirani and M.M. Ratwani, Khanna Publishers. 2. Structural Analysis Vol I \& II by G.S.Pandit and S.P. Gupta, Tata McGraw Hill Education Pvt. Ltd.
2. Structural analysis T. S Thandavamoorthy, Oxford university Press

REFERENCES:

1. Structural Analysis by R. C. Hibbeler, Pearson Education
2. Basic Structural Analysis by K.U. Muthu et al., I.K. International Publishing House Pvt. Ltd 3. Mechanics of Structures Vol - I and II by H.J. Shah and S.B. Junnarkar, Charotar Publishing House Pvt. Ltd.
3. Basic Structural Analysis by C. S. Reddy., Tata McGraw Hill Education Pvt. Ltd.
4. Fundamentals of Structural Analysis by M.L. Gamhir, PHI Learning Pvt. Ltd

NPTEL WEB COURSE:

http://nptel.ac.in/courses/105104101/

NPTEL VIDEO COURSE:

http://nptel.ac.in/courses/105104101/\#

RELEVANT SYLLABUS FOR GATE

Analysis of statically determinate trusses, arches, beams, cables and frames, displacements in statically determinate structures and analysis of statically indeterminate structures by force/ energy methods, analysis by displacement methods (slope deflection and moment distribution methods), influence lines for determinate and indeterminate structures. Basic concepts of matrix methods of structural analysis.

RELEVANT SYLLABUS FOR IES

Analysis of determinate structures - different methods including graphical methods. Analysis of indeterminate skeletal frames - moment distribution, slope-deflection, stiffness and force methods, energy methods, Muller-Breslau principle and application. Plastic analysis of indeterminate beams and simple frames - shape factors.

VIII. COURSE PLAN:

Civil II Year II SemPage 6

		量					
28.		Three hinged parabolic circular arches having supports at different levels	https://drive.googl e.com/drive/folder s/1IvaJYQiMejwa Sh4dUPBQ2jc1d5 yqV77e?usp=shar ing	https://drive.google. com/drive/folders/11 vaJYQiMejwaSh4d UPBQ2jc1d5yqV77 e?usp=sharing	Analysis of three hinged arches	$\begin{aligned} & \text { PPT/ } \\ & \text { PDF } \end{aligned}$	$\begin{aligned} & \text { R1, } \\ & \text { R2, } \\ & \text { R } \end{aligned}$
29.	3	UNIT - III PROPPED CANTILEVE R and FIXED BEAMS: Determination of static and kinematic indeterminacie s for beams	https://drive.googl e.com/drive/folder s/1IvaJYQiMejwa Sh4dUPBQ2jc1d5 yqV77e?usp=shar ing	https://drive.google. com/drive/folders/11 vaJYQiMejwaSh4d UPBQ2jc1d5yqV77 e?usp=sharing	To determine static and kinematic indetermin aci es of beams	$\begin{aligned} & \text { PPT/ } \\ & \text { PDF } \end{aligned}$	$\begin{aligned} & \text { R1, } \\ & \text { R2, } \\ & \text { R } \end{aligned}$
30.		Analysis of Propped cantilever	https://drive.googl e.com/drive/folder s/1IvaJYQiMejwa Sh4dUPBQ2jcld5 yqV77e?usp=shar ing	https://drive.google. com/drive/folders/11 vaJYQiMejwaSh4d UPBQ2jc1d5yqV77 e?usp=sharing	To understand analysis of propped cantilever	$\begin{aligned} & \text { PPT/ } \\ & \text { PDF } \end{aligned}$	$\begin{aligned} & \text { R1, } \\ & \text { R2, } \\ & \text { R } \end{aligned}$
31.		fixed beams, including the beams with different moments of inertia	https://drive.googl e.com/drive/folder s/1IvaJYQiMejwa Sh4dUPBQ2jc1d5 yqV77e?usp=shar ing	https://drive.google. com/drive/folders/1I vaJYQiMejwaSh4d UPBQ2jc1 15yqV77 e?usp=sharing	To know fixed beams and beams with different moments of inertia	$\begin{aligned} & \text { PPT/ } \\ & \text { PDF } \end{aligned}$	$\begin{aligned} & \text { R1, } \\ & \text { R2, } \\ & \text { R } \end{aligned}$
		I mid exams					
32.		subjected to uniformly distributed load point loads uniformly varying load	https://drive.googl e.com/drive/folder s/1IvaJYQiMejwa Sh4dUPBQ2jc1d5 yqV77e?usp=shar ing	https://drive.google. com/drive/folders/11 vaJYQiMejwaSh4d UPBQ2jc1d5yqV77 e?usp=sharing	To know about UDL and point loads,UVL	$\begin{aligned} & \text { PPT/ } \\ & \text { PDF } \end{aligned}$	$\begin{aligned} & \text { R1, } \\ & \text { R2, } \\ & \text { R } \end{aligned}$

Civil II Year II SemPage 10

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

$\begin{aligned} & \mathrm{CO} \\ & { }_{\mathrm{o}} \mathrm{~s} \end{aligned}$	Program Outcomes												Program Specific Outcomes		
	$\begin{gathered} \hline \mathbf{P} \\ \mathbf{O 1} \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 3 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 5 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	$\begin{gathered} \hline \mathbf{P} \\ \mathbf{O 8} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{P} \\ \mathbf{O 9} \end{array}$	$\begin{gathered} \hline \text { PO } \\ 10 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{aligned} & \hline \text { PS } \\ & \mathrm{O} 2 \end{aligned}$	$\begin{gathered} \hline \text { PSO } \\ 3 \end{gathered}$
CO1	3	3	1	2	3			1	1		3	2	3	2	1
$\begin{aligned} & \text { CO } \\ & 2 \end{aligned}$	3	3	1	1	3			-	2	1	-	2		2	
$\begin{aligned} & \hline \text { CO } \\ & 3 \end{aligned}$	3	3	1	1	3			-	-	-	2	1	2	2	
$\begin{aligned} & \text { CO } \\ & 4 \end{aligned}$	3	3	2	1	3			1	1	-	3	3	2	2	-
$\begin{aligned} & \hline \text { CO } \\ & 5 \end{aligned}$	3	3	1	1	3			-	1	1	-	-		2	1
CO	3	3	1	1	3			1	1	1		-		2	1
$\begin{aligned} & \text { AV } \\ & \mathbf{G} \end{aligned}$	3	3	1.16	1.16	3		-	0.5	1	0.5	1.33	1	2.16	2	0.5

$\operatorname{Small}(\mathbf{S})-1 \quad \operatorname{Medium}(\mathbf{M})-2 \quad \operatorname{High}(H)-3$
X. QUESTION BANK: (JNTUH)

UNIT - I
SHORT ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1.	Explain types of frames. Perfect, Imperfect and Redundant frames?	Understanding	1
2.	Define frame?	Understanding	1
3.	What is equilibrium of plane frames?	 remembering	1
4.	Explain Methods of analysis of Determinate pin jointed frames?	 remembering	1
5.	What is the procedure for analysis of frame using Method of section?	 remembering	1
6.	What is the procedure for analysis of frame using Method of joints?	 remembering	1
7.	How to analyse the frame using Method of Tension coefficient method?	 remembering	1
8.	How to analyse the frame for vertical, horizontal and inclined loads?	 remembering	1
9.	Differentiate between pin joint and rigid joint	 remembering	1
10.	Differentiate between method of joints and method of sections?	 remembering	1

LONG ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Progam Outcome
1	Identify the forces in the members of the truss shown in figure. The cross sectional area of vertical and horizontal members is 4000 mm 2 and that of the diagonals is 6000 mm 2	Analyze\&Apply	1

2	Analyze the truss shown in figure by consistent deformation method. Assume that the crosssectional areas of all members are same.	Analyze Apply	\&	1
3	From the truss in Fig. T-01, determine the force in mebers BC, CE, and EF.	Analyze Apply	$\boldsymbol{\&}$	1
4	The roof truss shown in Fig. T-03 is pinned at point A, and supported by a roller at point H. Determine the force in member DG.	Analyze Apply	$\boldsymbol{\&}$	1
5	Determine the force in members AB, BD, and CD of the truss shown in Fig. P-414. Also solve for the force on members FH, DF, and DG.	Analyze Apply	$\boldsymbol{\&}$	1

6	Find the force acting in all members of the truss shown in Figure T-01. Figure T - 01	Analyze Apply		1
7	The structure in Fig. T-02 is a truss which is pinned to the floor at point A, and supported by a roller at point D . Determine the force to all members of the truss.	Analyze Apply		
8	Compute the force in all members of the truss shown in Fig. T-08.	Analyze \& Apply	$\left\lvert\, \begin{aligned} & 1 \\ & \\ & \end{aligned}\right.$	
9	Determine the force in members AB, BD, and CD of the truss shown in Fig. P-414. Also solve for the force on members FH, DF, and DG.	Analyze \& Apply	1	

10	Determine the forces in the truss using method of section	Analyze \& Apply	1

UNIT - II

SHORT ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	Explain Strain Energy Method?	understanding	2
2	Explain Castigliano's Method?	understanding	2
3	What is an arch? Explain	understanding	2
4	Distinguish between two hinged and three hinged arches?	understanding	2
5	Give the equation for a parabolic arch whose springing is at different levels?	Understanding	2
6	Explain the effect of temperature on the horizontal thrust of a two hinged arch subjected to a system of vertical loads?	understanding	2
7	Indicate the positions of a moving point load for maximum negative and positive bending moments in a three hinged arch.	Remembering	

LONG ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	Determine the deflection of the free end of a antilever of length L subjected to a concentrated oad P at the free end.	Analyze \& Apply	2
2	A simply supported beam of varying depth is oaded with a point load at 4 m distance from support A is 60 kN . Determine the deflection under point load. Given: Moment of Inertia up to 4 m from A is I and from 4 m to 8 m is 2 I . Assume E s constant.	Analyze \& Apply	2
3	Determine the vertical deflection of point C in the frame show in fig. below. Determine the vertical deflection at free end of a overhanging beam B C 2 I A	Analyze \& Apply	2
4	A three-hinged circular arch hinged at the springing and crown points has a span of 40 m and a central rise of 8 m . It carries a UDL of $20 \mathrm{kN} / \mathrm{m}$ over the left-half of the span together with a concentrated load of 100 kN at the right quarter span. Find Reactions at the supports Normal Thrust Shear at a section from 10 m from left support	Analyze \& Apply	2
5	A three-hinged circular arch hinged at the springing and crown points has a span of 25 m and a central rise of 5 m . It carries a Point load of 100 kN at 6 m from left support. Calculate	Analyze \& Apply	2

6	Reactions at the supports Reactions at Crown Moment at 5 m from the left support	Analyze \& Apply	2
7	A three-hinged semi-circular arch of radius ' R ' carries UDL of w/unit length over its entire orizontal span. Determine Reactions at the supports Maximum Bending Moment in the arch	Analyze \& Apply	2
8	A symmetric three-hinged parabolic arch has a span of 36 m and a central rise of 6 m is subjected o a concentrated load of 120 kN at a point from eft support. Draw Bending Moment Diagram	Analyze \& Apply	2
9	A symmetric three-hinged parabolic arch has a span of 60 m and a central rise of 12 m is subjected to a concentrated load of 40 kN acting at 10 m from its left support and UDL of 10 kN / m actingover its entire right-half span. Draw Bending moment Diagram for the arch.	Analyze \& Apply	2
10	A three-hinged parabolic arch having supports at different levels i.e., support B is higher than 2 m support A, has a span of 40 m and a central rise of 5 m with reference to support A is subjected to an UDL of $30 \mathrm{kN} / \mathrm{m}$ acting over its entire left-half span. Determine Horizontal Thrust developed Bending Moment, Normal Thrust and Radial Shear Force developed at a section of 15 m from the left support Show that the parabolic shape is a funicular shape for a three-hinged arch subjected to a uniformly distributed load over to its entire span	Analyze \& Apply	2

UNIT - III

SHORT ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	What is a Prop?	Understanding	$\begin{aligned} & 3 \\ & 3 \end{aligned}$
2	How to analysis Propped Cantilever and Fixed beams?	Understanding	3
$\begin{gathered} 3 \\ 3 \end{gathered}$	What are the methods to calculate analysis of Propped Cantilever and Fixed beams?	Understanding	$\begin{aligned} & 3 \\ & 3 \end{aligned}$
4	Give the relation between number of joints, number of members, in a perfect frame in plane and space structures	Understanding	3

5	Explain the types of structures	Understanding	3 3
6	Explain the different types of props with the sketches	Understanding	3
7	In a member AB if a moment of 10 kN -m is applied at A whats the moment carried over to the fixed support B.	Understanding	3
8	How fixed beam can be made statically determinate?	Understanding	3
9	What is hinge? How reactions will be calculated?	Understanding	3
10	How hinged beam can be made statically determinate?	Understanding	3

LONG ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	A fixed beam of length 3m is subjected to two point loads 9KN at the middle third point. Calculate Bending moment at the fixed end	3 3	
2	Calculate deflection at mid span for a propped cantilever beam of load 10Kn/m for a span of 4m	Analyze	3
3	Calculate maximum bending moment for a propped cantilever beam which carries a udl of 10Kn/m for a span of 2m.	3	
	Calculate point of contra flexure for propped cantilever beam has a 4m length carries point load of 20KN at free end	Analyze \& Apply	3
4		Ander	

5	A cantilever of length 8 m carries udl of $2 \mathrm{Kn} / \mathrm{m}$ run over the whole length. The cantilever is propped rigidly at the free end. If $\mathrm{E}=10^{\wedge} 5 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=10^{\wedge} 8 \mathrm{~mm}^{\wedge} 4$, then determine reaction at the rigid prop and deflection at the center	Analyze \& Apply	3
6	Analyse the propped cantilever, during the loading the fixed end support is rotated by 0.002 radians in anticlockwise direction. Draw BMD	Analyze \& Apply	3
7	A fixed beam AB of length 6 m carries a uniformly distributed load $3 \mathrm{kn} / \mathrm{m}$ over the left half of the span together with a point load of 4 kn at a distance of 4.5 m from the left end. Determine the fixing end moments and support reactions.	Analyze \& Apply	3 3
8	Determine the reactions of propped cantilever beam shown and draw BMD	Analyze \& Apply	3
9	A cantilever of length 8 m carries udl of $10 \mathrm{Kn} / \mathrm{m}$ run over the whole length. The cantilever is propped rigidly at the free end. If $\mathrm{E}=20 \mathrm{X} 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=10^{\wedge} 8 \mathrm{~mm} \wedge 4$, then determine reaction at the rigid prop and deflection at the center.	Analyze \& Apply	3 3

Find the static and kinematic indeterminacies of the Analyze \& Apply
below

UNIT - IV

SHORT ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	List out Assumptions made in Slope Deflection Method of analyzing Indeterminate structures	understanding	4
2	Explain Slope Deflection Equations	understanding	4
3	State relative merit of moment distribution method over slope deflection method.	remembering	4
4	Name the three classical force methods used in the analysis of continuous beams	remembering	4
5	What are the limitations of slope deflection method?	understanding	4
6	Write down the equilibrium equations used in slope deflection methods?	remembering	4
7	Why is slope deflection equation method known as stiffness method?	understanding	4

-			
8	How to Analyse of Continuous beams with one end is fixed and other end is simply supported.	Analyze \& Apply	4
9	How to Analyse of Continuous beams with both ends are supports simply supported.	Analyze \& Apply	4
10	Analysis of Continuous beams with overhang at one end.	Analyze \& Apply	4

LONG ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Outcome
1	Analyse the two span continuous beams and draw BMD, SFD, and Elastic Curve. Assume E is constant. $\mathrm{AB}=4 \mathrm{~m}, \mathrm{BC}=6 \mathrm{~m}$, UDL over span BC is $20 \mathrm{kN} / \mathrm{m}$, Central Point Load on Span AB is 40 KN , Moment of Inertia of beam AB is I and BC is 2I	Analyze \& Apply	4
2	Analyse the two span continuous beams and draw BMD, SFD, and Elastic Curve. Given: EI $=4000$ $\mathrm{kN}-\mathrm{m}^{2}, \mathrm{AB}=8 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}$, UDL over span AB is $20 \mathrm{kN} / \mathrm{m}$, Central Point Load on Span BC is 60 kN . Both ends A and C are fixed. EI for span AB is 2 times of span BC.	Analyze \& Apply	4
$\begin{gathered} 3 \\ 3 \end{gathered}$	For the beam shown below If he left support and right support sinks by 15 mm and 7 mm respectively find moments and reactions at supports Draw BMD EI $=6000 \mathrm{Kn}-\mathrm{m} 2$	Analyze \& Apply	4
4	Analyse the two span continuous beams and draw BMD, SFD, and Elastic Curve. Assume E and I is constant. $\mathrm{AB}=6 \mathrm{~m}, \mathrm{BC}=6 \mathrm{~m}$, UDL over span BC is $30 \mathrm{kN} / \mathrm{m}$, Central Point Load on Span AB is 40 KN , Support A is fixed and C is simply supported.	Analyze \& Apply	4

5	Analyse the two span continuous beams with overhang and draw BMD, SFD, and Elastic Curve. Assume E is constant. $\mathrm{AB}=6 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=2 \mathrm{~m}$. UDL over span AB is $20 \mathrm{kN} / \mathrm{m}$, Central Point Load on span BC is 80 kN and Point Load of 40 kN is acting at D . Beam CD is overhanging beam	Analyze \& Apply	4
6	Analyse the three span continuous beams and draw BMD, SFD, and Elastic Curve. Given: AB $=4 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=6 \mathrm{~m}$. UDL over span AB is $30 \mathrm{kN} / \mathrm{m}$, Central Point Load on span BC is 60 kN , and a Point load of 60 kN is acting at a distance of 2 m from support B. Support A is Fixed and D is simply supported. Moment of Inertia: $\mathrm{AB}=\mathrm{BC}=\mathrm{I}, \mathrm{CD}=2 \mathrm{I}$	Analyze \& Apply	4
7	Find fixed end moments and reactions and draw BMD for the beam shown below assume necessary data	Analyze \& Apply	4
8	Analyse the three span continuous beams if support C sinks by 10 mm and draw BMD, SFD, and Elastic Curve. Given: $\mathrm{AB}=3 \mathrm{~m}, \mathrm{BC}=6 \mathrm{~m}, \mathrm{CD}=3 \mathrm{~m}$. UDL over span AB is $40 \mathrm{kN} / \mathrm{m}$, a Point load of 120 kN is acting at a distance of 2 m from support B , an UDL of $60 \mathrm{kN} / \mathrm{m}$ is acting over span CD. Both ends A and D are fixed. Moment of Inertia: $\mathrm{AB}=\mathrm{CD}=\mathrm{I}$, $B C=2 I . E=2 \times 10^{5} / \mathrm{mm}^{2} \cdot \mathrm{I}=4 \times 10^{7} \mathrm{~mm}^{4}$.	Analyze \& Apply	4
9	What are the advantages of slope-deflection method over moment distribution method?	Remembering \& Understanding	4
10	Define distribution factor and carry over factor in moment distribution method.	Remembering \& Understanding	4

UNIT - V

SHORT ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	What is meant by ILD?	Understanding	5
2	What are the uses of influence line diagrams?	Remembering	5
3	State Muller Breslau's principle.	 Understanding	5
4	In the context of rolling loads, what do you understand by the term equivalent uniformly distributed load?	 Understanding	5
5	What is Influence line Diagrams for Simply Supported Beams	Understanding	5
6	What is Influence line Diagrams for Cantilever Beams?	Understanding	5
7	What is Influence line Diagrams for Overhang Beams?	 remembering	5
8	What is Influence line Diagrams for Double Overhang Beams?	Understanding	5
9	When a series of wheel loads move along a girder, what is the condition for getting	 Understanding	5
10	What is Maximum bending moment under any one point load?	Understanding	

LONG ANSWER QUESTIONS.

S.No	Question	Blooms Taxonomy Level	Program Out come
1	A single rolling load of 100 kN moves on a girder of span 20m. Construct the influence lines for (i) Shear force and (ii) Bending moment for a section 5m from the left support.	Analyze \& Apply	5
$\mathbf{2}$	Determine the influence line diagram for bending moment at a point D, the middle point of span AB of a continuous beam ABC of span AB=6m and BC=4m simply supported at supports A,B and C. Compute the ordinates at every 1m interval.	Analyze \& Apply	5
$\mathbf{3}$	Construct the influence lines for points at which the maximum shears and maximum bending moment develop. Determine these maximum values.	Analyze \& Apply	5

	Derive the influence diagram for reactions and bending moment at any section of a simply supported beam. Using the ILD, determine the support reaction and find bending moment at 2m, 4m and 6m for a simply supported beam of span 8m subjected to three point loads of 10kN, 15kN and 5kN placed at 1m, 4.5 m and 6.5m respectively.	\& Apply

10	Analysis the IL for force in member BC and CI for the truss shown in figure. The height of the truss is 9 m and each segment is 9 m long. 1. Determine the maximum shear forces and bendingm moment diagram 2. Calculate values at 5 m and 8 m from the left hand support. 3. Draw ILD for a) reaction Vb at B b) reaction Va at A c) Shear force at D d) BM at D find max values of these at LL of 20 kN -m	Analyze \& Apply	5

XI. OBJECTIVE QUESTIONS: JNTUH

UNIT - I

1. Clastigliano's theorem is applied to
a. Simply supported beam
b. Propped cantilever beam
c. Fixed \& continuous beam
d. Continuous beam only
2. For a symmetrical two hinged parabolic arch, if one of the supports settles horizontally, then the horizontal thrust
a)is increased
b) is decreased
c) remains unchanged
d) becomes zero
3. The Castigliano's second theorem can be used to compute deflections
a. in statically determinate structures only
b. for any type of structure
c .at the point under the load only
d. for beams and frames only
4. The elastic strain energy stored in a rectangular cantilever beam of length L subjected to a bending moment M applied at the end is
a. $\mathrm{ML}^{2} / 2 \mathrm{EI}$
b.M2L/2E
c. $\mathrm{M}^{2} \mathrm{~L} / 3 \mathrm{EI}$
d. $\mathrm{M}^{2} \mathrm{~L} / 16 \mathrm{EI}$
5. In case of a trussed beam the strain energy stored is due to
a. Bending only
b. direct force only
c. Both bending and direct force d.none
6. A beam carries a uniformly distributed load throughout its length. In which of the following configurations will strain energy be maximum
a. Cantilever
b. simply supported beam
c. Propped cantilever.
d.fixed beam.
7. Unit Load method is based on []
a) Internal strain energy
b) Theorem of minimum potential energy
c) Castigliano's theorem
d) Bettis theorem
8. Strain energy is a form of []
a) kinetic energy
b) Heat energy
c) Potential energy
d) Plastic energy
9. Arches are of geometrical shapes of []
a) Rectangular
b) Square
c) Triangular
d) Circular
10. Loads which are not considered in the analysis of arches are []
a) Externally applied loads
b) Support settlements
11. Deflection at mid span of a fixed beam subjected to UDL []
a) $5 / 384 *$ w14/EI
b) $1 / 384 *$ w $14 / \mathrm{EI}$
c) $1 / 192 *$ wl4/EI
d) $1 / 84^{*} \mathrm{wl} 4 / \mathrm{EI}$
12. Castiglianos second theorem is \qquad
13. Expression for strain energy due to bending is given by...
14. Eddys theorem states that....
15. The economy of a particular Arch is influenced by \qquad

UNIT - II

1. The number of simultaneous equations to be solved in the slope deflection method, is equal to
a) The degree of statically indeterminacy
b) The degree of kinematic indeterminacy
c) The number of joints in the structure
d) None of the above
2. The analysis of a statically in determinate beam can be done by
a)Equations of static equilibrium alone
b) Equations of displacement or deformations
c) both $a \& b$
d) none of the above
3. A prismatic beam of length L is simply supported at a total u.d.l. of W spread over its entire span. It is then propped at its centre to neutralize the deflection. The net bending moment at its centre will be
a. WL
b.WL/8
c.WL/24
d.WL/32
4. A propped cantilever of span ' L ' is subjected to a moment +M (sagging) at the propped end. The moment at the fixed end will be
a.M (hogging)
b. 2 M (hogging)
c.M/2(hogging)
d.none
5. The ratio of maximum deflections of a Simply supported beam and fixed beam carrying U.d.l. thoughout is
a. 2
b. 3
c. 4 .
d. 5
6. A fixed beam of span 4 metres is subjected to a u.d.l. of $30 \mathrm{KN} / \mathrm{m}$. The support moment in kN.m
a. 40
b. 60
c. 30
d. 120
7. The prop reaction of a propped beam with central load ' W ' is []
a) $7 / 8 \mathrm{~W}$
b) $5 / 8 \mathrm{~W}$
c) $3 / 10 \mathrm{~W}$
d) $5 / 16 \mathrm{~W}$
8. The moment at fixed end in a propped beam due to a couple M0 applied at prop end is []
a) $\mathrm{M} 0 / 2$
b) $\mathrm{M} 0 / 4$
c) $\mathrm{M} 0 / 6$
d) $\mathrm{M} 0 / 8$
9. when the left support of a fixed beam rotates by ' Θ ', the fixed end moment at right support is
a) $2 \mathrm{EI} / \mathrm{L}$
b) $4 \mathrm{EI} \cdot / \mathrm{L}$
c) $6 \mathrm{EI} \cdot / \mathrm{L}$
d) $12 \mathrm{EI} \mathrm{E} / \mathrm{L}$
10. Static Indeterminacy of a propped beam is ...
11. The prop reaction of a propped beam carrying udl ' w ' is......
12. The static indeterminacy of a Fixed beam with vertical loading only is....
13. A beam restrained from both rotation and translation at one and free at the other support is called
14. For which one of the following cases is the Muller-Breslau principle applicable to get influence line?
(a) Reaction at the ends of a simple beam
(b) Bending moment at a section
(c) Shear force at a section
(d) Forces and moments at any section
15. In an axially loaded spirally reinforced short column, the concrete inside the core is subjected to
a. bending and compression b. biaxial compression
c. triaxial compression d. uniaxial compression

UNIT - III

1. The number of members required for perfect frame \qquad
(a) $\mathrm{m}=2-3 \mathrm{j}$
(b) $m=3 j-1$
(c) $m=2 \mathrm{j}-3$ (d)
(d) $m=2 i+1$
2. What are equations of equilibrium?
(a) Summation of all the moments
(b) moments in X direction
(c) Moments in Y direction
(d) moments in Z direction.
3. Number of unknown internal forces in each member of a rigid jointed plane frame is
a) 1
b) 2
c) 3
d) 6
4. A rigid-jointed plane frame is stable and statically determinate if
a) $(\mathrm{m}+\mathrm{r})=2 \mathrm{j}$
b) $(\mathrm{m}+\mathrm{r})=3 \mathrm{j}$
c) $(3 \mathrm{~m}+\mathrm{r})=3 \mathrm{j}$
d) $(m+3 r)=3 j$
5. If in a rigid-jointed space frame, $(6 \mathrm{~m}+\mathrm{r})<6 \mathrm{j}$, then the frame is
a) Unstable
b) stable and statically determinate
c) Stable and statically indeterminate e) none of the above
6. .If there are m unknown member forces, r unknown reaction components and j number of joints, then the degree of static indeterminacy of a pin-jointed plane frame is given by
a) $m+r+2 j$
b) $m-r+2 j$
c) $m+r-2 j$
d) $m+r-3 j$
7. A pin-jointed plane frame is unstable if
a) $(m+r)<2 j$
b) $m+r=2 j$
c) $(m+r)>2 j$
d) $(m+r)>2 j$
8. Truss member are connected at joints by []
a) Bolts
b) Links
c) Rollers
d) Springs
9. A force in a member of a truss can be a []
a) Moment
b) Tension
c) Shear
d) Twisting moment
10. A truss can be unstable even when it is......
11. The degree of indeterminacy of a truss is given by the expression.....
12. Which of the following terms represents the torque corresponding to a twist of one radian in a shaft over its unit length?
(a) Torsional stress (b) Torsional rigidity
(c) Flexural rigidity (d) Moment of resistance
13. A rectangular beam of width 100 mm is subjected to a maximum shear force of 60 kN . The corresponding maximum shear stress in the cross-section is $4 \mathrm{~N} / \mathrm{mm}^{2}$. The depth of the beam should be
(a) 200 mm (b)
150 mm
(c) 100 mm
(d) 225 mm
14. Out of the two beams of the same material and same cross-sectional area, one is of circular cross-section and the other is of square cross-section. If each of these is subjected to bending moment of the same magnitude, then
(a) both sections would be equally strong.
(b) both sections would be equally economical
(c) square section would be more economical than circular section
(d) square section would be less economical than circular section
15. For the design of a cast iron member, the most appropriate theory of failure is
(a) Mohr's theory
(b) Rankine's theory
(c) maximum stress theory
(d) maximum shear energy theory

UNIT - IV

1. The slope deflections equations give the relationship between
a. slope and deflection only b. Bending moment and rotation only
c. B.M. and vertical deflection only d. Bending moment rotation and deflections
2. In slope deflection method the displacements considered are due to
a . shear force b . Bending moment c . Axial force and bending moment
d. Shear force and bending moment
3. The no. Of simultaneous equations to be solved in the slope deflection method is equal to
a. static indeterminacy
b. Kinematic indeterminacy
c. No. of joint displacements in the structure
d. None of the above.
4. The ratio of stiffness of a beam at a joints with oneside hinged support and other side fixed is (Assuming both beams have same I and L)
a. 1/2
b.3/4
c. 1
d. $4 / 3$
5. The reaction at the middle support is
a. WL
b. $5 \mathrm{wL} / 2$
c. $5 \mathrm{wL} / 4$
d. $5 \mathrm{wL} / 8$
6. The bending moment at the middle support is
a. $\mathrm{Wl}^{2} / 4$
b. $\mathrm{Wl}^{2} / 8$
c. $\mathrm{Wl}^{2} / 12$
d. $\mathrm{Wl}^{2} / 16$
7. Moment distribution method is proposed by []
A) Hardy cross
B) Muller
C) Hooke
D) None
8. The method used for analysis of indeterminate beams and rigidly jointed frames []
A) Moment area method
B) Shear force
C) Slope deflection method
D) None
9. In slope deflection method, the deformations are considered to be caused by []
A) BM
B) Shear force
C) Axial force
D) All
10. The slope deflection equations give the relationship between []
A) Slope and deflection only B) BM and rotation only
C) BM and Shear force D) BM, rotation and deflection
11. The number of simultaneous equations to be solved in slope deflection method is equal to
A) Static indeterminacy
B) Kinematic indeterminacy
C) Both
D) None
12. The three moments equation is applicable only when
a. the beam is prismatic b. there is no settlement of supports
c. there is no discontinuity such as hinges within the span d. the spans are equal
13. The number of independent displacement components at each joint of a rigid-jointed
space frame is
a. 1
b. 2
c. 3
d. 6
14. The Muller-Breslau principle in structural analysis is used for
(a) drawing influence line diagram for any force function
(b) superimposition of load effects
(c) writing virtual work equation (d) None of the above
15. If a shaft rotates at $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and is subjected to a torque of 3000 N -m, the power transmitted in kW would be
(a) $30 \angle$ (b) $15 \angle$
(c) $20 \angle$ (d) $10 \angle$

UNIT-V

1. What is /are the use(s) of influence lines?
a. to study the effect of moving loads on the structure
b. To calculate the value of stress function with the critical load condition
c. To find the position of live load for a maximum value of particular stress function
d. Towards all the above purpose
2. Which one of the following is correct in respect of the influence line for the bending moment at one fourths of the span from left support of a prismatic beam simply supportedat ends?
a. It is composed of straight lines only b. It is composed of curved lines only
c. It is composed of straight and curved lines d. It is parabolic.
3. What is the shape of influenced line diagram for the maximum B.M in respect of a simply supported beam?
a. Rectangular b. triangular c. parabolic d. circular
4. What is the variation of influenced line for stress function in a statically determinate structure?
a. Parabolic
b. Bilinear
c. linear
d. Uniformly Rectangular.
5. Muller-Breslau Principle is applicable to get influence line for which one of the following?
a. reaction at the ends of simple beam
b. Bending moment at a section
c. Shear force at a section
d. Force and moments at any section
6. For a simply supported beam of span 10M, I.L.D is drawn for B.M. at a section 4 m from the left hand support. The maximum B.M. at the section due to a moving point load of 160 KN , is equal to
a.640kN.m
b. $960 \mathrm{kN} . \mathrm{m}$.
c. $384 \mathrm{kN} . \mathrm{m}$.
d. 400 kN .m
7. For any parameter at a section is a diagram showing the variation in the parameter at that sections a unit load rolls over the span. []
a) BMD
b) Influence line
c) Shear force
d) None
8. To draw influence lines for any linear system, principle used []
a) Adward's
b) Hoen's
c) Muller's
d) None
9. The relative stiffness of a propped cantilever of length L is []
a) 34 L b) $3 / \mathrm{L}$
c) $2 / 3 \mathrm{~L}$
d) None
10. Cause for side sway of frame is []
a) Settlement of supports
b) horizontal loading
c) unsymmetrical loading
d) all the above
11. If the shear force at the section of the beam under bending is equal to zero , then the bending moment at the section is []
a) Zero
b) Max
c) Minimum
d) None
12. Which of the following is/are determined at a point of a given beam by moment areamethod?

1. Shear force 2. Bending moment 3. slope 4 . deflection

Select the correct answer using the codes given below:
a. 1 and 2 b. 3 alone c. 4 alone d. 3 and 4
13. Which one of the following rules ascertains the maximum permissible eccentricity of loads ncircular column so that stresses will always be compressive?
a. Middle fourth rule b. Middle third rule c. Middle half rule d. Middle two-third rule 14. In moment distribution method, the sum of distribution factors of all the members meetingat any joint is always
a. zero
b. less than 1
c. 1
d. greater than 1
15. Principle of superposition is applicable when deflections are linear functions of appliedforces
a. material obeys Hooke's law
b. the action of applied forces will be affected by small deformations of the structure
c. both a and b
d.none of the above

GATE QUESTIONS:

1. A pin-jointed plane frame is unstable if
a. $(m+r)<2 j$
b. $m+r=2 j$
c. $(m+r)>2 j$
d. none of the above
2. The degree of static indeterminacy of a rigid-jointed space frame is
a. $m+r-2 j$
b. $m+r-3 j$
c. $3 m+r-3 j$
d. $6 m+r-6 j$
3. If there are m unknown member forces, r unknown reaction components and j number joints, then the degree of static indeterminacy of a pin-jointed plane frame is given by
a. $m+r+2 j$
b. $m-r+2 j$
c. $m+r-2 j$
d. $m+r-3 j$
4. The number of independent equations to be satisfied for static equilibrium in a space structure is
a. 2
b. 3
c. 4
d. 6
5. If in a rigid-jointed space frame, $(6 \mathrm{~m}+\mathrm{r})<6 \mathrm{j}$, then the frame is
a. unstable
b. stable and statically determinate
c. stable and statically indeterminate
d. none of the above
6. In the slope deflection equations, the deformations are considered to be caused by i) bending moment ii) shear force iii) axial force The correct answer is
a. only (i)
b. (i)and(ii)
c.(ii) and (iii)
d.(i), (ii) and (iii)
7. Castigliano's first theorem is applicable for statically determinate structures only when
a. the system behaves elastically
b. principle of superposition is valid
c. none of the above d. both a and b
8. Number of unknown internal forces in each member of a rigid jointed plane frame is
1 b. 2
c. 3
d. 6
9. A rigid-jointed plane frame is stable and statically determinate if
a. $(\mathrm{m}+\mathrm{r})=2 \mathrm{j}$
b. $(\mathrm{m}+\mathrm{r})=3 \mathrm{j}$
c. $(3 m+r)=3 j$
d. $(m+3 r)=3 j$
10. The deflection at any point of a perfect frame can be obtained by applying a unit load at the joint in
a. vertical direction
b. horizontal direction
c. inclined direction
d. direction in which the deflection is required
11. If in a pin-jointed plane frame $(m+r)>2 j$, then the frame is
a. stable and statically determinate
b. stable and statically indeterminate
c. unstable
d.none of the above
12. Independent displacement components at each joint of a rigid-jointed plane frame are
a. three linear movements b. two linear movements and one rotation
c. one linear movement and two rotations
d. three rotations
13. The degree of static indeterminacy of a pin-jointed space frame is given by
a. $m+r-2 j$
b. $m+r-3 j$
c. $3 \mathrm{~m}+\mathrm{r}-3 \mathrm{j}$
d. $m+r+3 j$
14. In column analogy method, the area of an analogous column for a fixed beam of span L and flexural rigidity El is taken as
a. L/EI
b. L/2EI
c. L/3EI
d. L/4EI
15. Degree of kinematic indeterminacy of a pin-jointed plane frame is given by
a. $2 \mathrm{j}-\mathrm{r}$
b. $\mathrm{j}-2 \mathrm{r}$
c. $3 \mathrm{j}-\mathrm{r}$
d. $2 \mathrm{j}+\mathrm{r}$
16. The carryover factor in a prismatic member whose far end is fixed is
a. 0
b. $1 / 2$
c. $3 / 4$
d. 1
17. The degree of kinematic indeterminacy of a pin-jointed space frame is
a. $2 \mathrm{j}-\mathrm{r}$
b. 3j-r
c. $\mathrm{j}-2 \mathrm{r}$
d. $\mathrm{j}-3 \mathrm{r}$
18. The degree of static indeterminacy up to which column analogy method can be used is
a. 2
b. 3
c. 4
d. unrestricted
19. Degree of static indeterminacy of a rigid-jointed plane frame having 15 members, 3 reaction components and 14 joints is
a. 2
b. 3
c. 6
d. 8
20. The principle of virtual work can be applied to elastic system by considering the virtual work of
a. internal forces only
b. external forces only
c. internal as well as external forces
d. none of the above

IES QUESTIONS:

1) Consider the following parameters with regards to slenderness ratio of a compression member:
1). Material 2). Sectional configuration
3). Length of member 4). Support end conditions
2. On which of these parameters does the slenderness ratio of a compression member depend?
(a) 1,2 and 3 only (b) 1,3 and 4 only (c) 2,3 and 4 only (d) 1,2,3 and 4
3.Two equal angles, each being ISA $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ of thickness 10 mm , are placed back-to-back and connected to either side of a gusset plate through a single row of 16 mm diameter rivets in double shear. The effective areas of the connected and unconnected legs of each of these angles are $775 \mathrm{~mm}^{2}$ and $950 \mathrm{~mm}^{2}$ respectively. If these angles are not tack-riveted, the net effective area of this pair of angles is
(a) $3650 \mathrm{~mm}^{2}$ (b) $3450 \mathrm{~mm}^{2}$ (c) $3076 \mathrm{~mm}^{2}$ (d) 2899 mm
3. A bar AB of diameter 40 mm and 4 m long is rigidly fixed at its ends. A torque $600 \mathrm{~N}-\mathrm{m}$ is applied at a section of the bar, 1 m from end A . The fixing couples TA and TB at the supports A and B, respectively are
(a) $200 \mathrm{~N}-\mathrm{m}$ and $400 \mathrm{~N}-\mathrm{m}$ (b) $300 \mathrm{~N}-\mathrm{m}$ and $150 \mathrm{~N}-\mathrm{m}$
(c) $450 \mathrm{~N}-\mathrm{m}$ and $150 \mathrm{~N}-\mathrm{m}$ (d) $300 \mathrm{~N}-\mathrm{m}$ and $100 \mathrm{~N}-\mathrm{m}$
5.Consider the following statements for longitudinal reinforcement in a RC member to resist earthquake force:
4. The tension steel ratio on any section shall not be less than yck ff 0.24
5. There shall be two bars at top as well as bottom of the member throughout.
6. The 'positive' steel at a joint face must be at least equal to half the 'negative' steel at that face.
Which of these statements are correct?
(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3
6.The maximum number of unknown forces that can be determined in a concurrent coplanar force system under equilibrium is
(a) 2 (b) 3 (c) 6 (d) 1
7. The maximum bending moment under a particular point load among a train of point loads crossing a simply supported girder occurs when that load is
(a) at mid-spam
(b) at one-third span
(c) at one-quarter span
(d) so placed that the load point and the point of CG of the train of loads are equidistant from the mid-span
8.uniformly distributed load of length 8 m crosses a simply supported girder of span 20 m . The maximum bending moment at the left quarter-span point occurs when the distance between the point of CG of the total load and mid-span is
(a) 0 (b) 2 m (c) 3 m (d) 4 m
9.Consider the following statements:
8. The principle of superposition will hold good for the analysis of linear structural systems only
9. The stress in a structural member due to several applied forces is the sum of the effects due to each of such forces, applied one at a time, only if the Hooke's law hold good.
10. Internal stresses may not be caused resulting from lack of fit of a structural member. Which of these statements are correct?
(a) 1, 2 and 3 (b) 1 and 2 only (c) 2 and 3 only (d) 1 and 3 only
10.Consider the following statements:
11. A properly constrained rigid system has several degrees of freedom.
12. The number of degrees of freedom of a locomotive moving on a railway track is only two.
13. A floating ship has six degrees of freedom.

Which of these statements is/are correct?
(a) 1, 2 and 3 (b) 3 only (c) 2 only (d) 1 only
11.suspension bridge with a two-hinged stiffening girder is statically
(a) determinate
(b) indeterminate to 1 degree
(c) indeterminate to 2 degrees
(d) indeterminate to 3 degrees

XIII. WEBSITES:

a. http://www.asce.org
b. http://www.icivilengineer.com
c. $\mathrm{http}: / / \mathrm{www} . c o n s t r u c t i o n-g u i d e . i n$

XIV.EXPERT DETAILS:

a. Prof. SATISH C. SHARMA Department of Mechanical \& Industrial Engineering Indian Institute of Technology Roorkee
b. Prof. M.S. Sivakumar Department of Applied Mechanics, IIT Madras. email: mssiva@iitm.ac.in
c. Prof. S.K. Bhattacharyya, Department of Civil Engineering, IIT Kharagpur.
d. Dr. Satish C Sharma (IITR)
e. LS Ramachandra \& SK Barai (IITKGP)

XV. JOURNALS:

$0970-1141$	Thesis Digest on civil Engineering	1987
$0973-8061$	International Engineering and Technology Journal of Civil and Structure	2007
$0975-5314$	International journal of civil engineering	2009
$0975-6744$	Journal of information knowledge and research in civil engineering	2009
$0976-6308$	International journal of civil engineering and technology	2010
$2249-426 \mathrm{X}$	International Journal of Civil Engineering and Applications	2011
$2249-8753$	Recent Trends in Civil Engineering and Technology	2011
$2277-5986$	World Research Journal of Civil Engineering	2011
$2277-7032$	International Journal of Structural and Civil Engineering	2012
$2278-9987$	International Journal of Civil Engineering (IJCE)	2012
$2319-6009$	International Journal of Structural and Civil Engineering Research	2012
$2320-723 X$	International Journal of Advanced Research in Civil, Structural, Environmental and Infrastructure Engineering and Developing	2013

XVI. LIST OF TOPICS FOR STUDENT SEMINARS:

a. Analysis of Arches - Three Hinged and Two Hinged Arches
b. Analysis of indeterminate structures using following methods
c. Slope Deflection Method
d. Moment Distribution Method
e. Finding Deflections using Energy Theorems
f. Simple Beams
g. Pin-jointed Trusses

XVII. CASE STUDIES / SMALL PROJECTS:

a. Case study on Analysis of Arches - Three Hinged and Two Hinged Arches
b. Case study on Analysis of indeterminate structures using following methods
c. Slope Deflection Method
d. Moment Distribution Method
e. Case study on Finding Deflections using Energy Theorems
f. Simple Beams
g. Pin-jointed Trusses
h. Case study on Analysis of structures under Moving Loads with the help of Influence Lines
i. Case study on Indeterminate Structural Analysis of Truss using Castigliano's theorem

